Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
ACS Appl Bio Mater ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629141

RESUMO

Freeze-based immobilization of deoxyribonucleic acid (DNA) oligonucleotides on gold nanoparticles (AuNPs) is highly efficient for single-stranded oligonucleotides but typically does not accommodate structures such as snap-cooled DNA hairpins (Sc-HPs) and snap-cooled molecular beacons (Sc-MBs) frequently used for biorecognition applications. Recognizing this limitation, we have developed a modified, freeze-based technique specifically designed to enable the adsorption of such hairpin oligonucleotides onto AuNP surfaces while ensuring that they retain their biosensing capabilities. Successful hairpin oligonucleotide conjugation of varying lengths to a wide range of AuNP diameters was corroborated by dynamic light scattering, ζ-potential, and UV-vis spectrophotometry. Moreover, we conducted a thorough evaluation of this modified method, confirming the retention of the sensing functions of Sc-HPs and Sc-MBs. This advancement not only offers a more efficient route for DNA hairpin conjugation but also elucidates the underlying biorecognition functions, with implications for broader applications in molecular diagnostics.

2.
Hortic Res ; 11(4): uhae050, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38645681

RESUMO

A Cucurbita pepo mutant with multiple defects in growth and development has been identified and characterized. The mutant dwfcp displayed a dwarf phenotype with dark green and shrinking leaves, shortened internodes and petioles, shorter but thicker roots and greater root biomass, and reduced fertility. The causal mutation of the phenotype was found to disrupt gene Cp4.1LG17g04540, the squash orthologue of the Arabidopsis brassinosteroid (BR) biosynthesis gene DWF5, encoding for 7-dehydrocholesterol reductase. A single nucleotide transition (G > A) causes a splicing defect in intron 6 that leads to a premature stop codon and a truncated CpDWF5 protein. The mutation co-segregated with the dwarf phenotype in a large BC1S1 segregating population. The reduced expression of CpDWF5 and brassinolide (BL) content in most mutant organs, and partial rescue of the mutant phenotype by exogenous application of BL, showed that the primary cause of the dwarfism in dwfcp is a BR deficiency. The results showed that in C. pepo, CpDWF5 is not only a positive growth regulator of different plant organs but also a negative regulator of salt tolerance. During germination and the early stages of seedling development, the dwarf mutant was less affected by salt stress than the wild type, concomitantly with a greater upregulation of genes associated with salt tolerance, including those involved in abscisic acid (ABA) biosynthesis, ABA and Ca2+ signaling, and those coding for cation exchangers and transporters.

3.
BMC Genomics ; 25(1): 268, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468207

RESUMO

BACKGROUND: The core regulation of the abscisic acid (ABA) signalling pathway comprises the multigenic families PYL, PP2C, and SnRK2. In this work, we conducted a genome-wide study of the components of these families in Cucurbita pepo. RESULTS: The bioinformatic analysis of the C. pepo genome resulted in the identification of 19 CpPYL, 102 CpPP2C and 10 CpSnRK2 genes. The investigation of gene structure and protein motifs allowed to define 4 PYL, 13 PP2C and 3 SnRK2 subfamilies. RNA-seq analysis was used to determine the expression of these gene families in different plant organs, as well as to detect their differential gene expression during germination, and in response to ABA and cold stress in leaves. The specific tissue expression of some gene members indicated the relevant role of some ABA signalling genes in plant development. Moreover, their differential expression under ABA treatment or cold stress revealed those ABA signalling genes that responded to ABA, and those that were up- or down-regulated in response to cold stress. A reduced number of genes responded to both treatments. Specific PYL-PP2C-SnRK2 genes that had potential roles in germination were also detected, including those regulated early during the imbibition phase, those regulated later during the embryo extension and radicle emergence phase, and those induced or repressed during the whole germination process. CONCLUSIONS: The outcomes of this research open new research lines for agriculture and for assessing gene function in future studies.


Assuntos
Proteínas de Arabidopsis , Cucurbita , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Cucurbita/genética , Cucurbita/metabolismo , Estudo de Associação Genômica Ampla , Plantas/genética , Resposta ao Choque Frio , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/genética
4.
Nutr. clín. diet. hosp ; 44(1): 290-294, Feb. 2024. tab
Artigo em Inglês | IBECS | ID: ibc-231325

RESUMO

Background: The consumption of macronutrients rich insugars, mainly fructose, promote metabolic changes and in-duce insulin resistance, hepatic and extrahepatic fatty aciddeposits, as well as an increase in the generation of free rad-icals and oxidative stress.Methods: Randomized clinical study, 74 subjects partici-pated, divided into 2 group: a calorie-restricted diet (n=37)and a low-fructose diet (n=37). They were evaluated at thebeginning and 6 weeks after the implementation of the diet,using anthropometric and biochemical parameters. Descriptivestatistics were used to analyze the data, Student’s t test fortwo independent samples considering unequal variances andfor means of two paired samples. Level p<0.05 was consid-ered in each analysis test.Results: The body mass index (BMI) shows statisticallysignificant differences p< 0.05 in the group with calorie re-striction after applying the diet. The waist and hip circumfer-ence were modified by the implementation of the diet in eachindependent group (p<0.001 for each statistical difference,respectively), only the waist-hip index (WHR) was modifiedwhen the results were compared between both groups,p<0.05. In the biochemical parameters after the implementa-tion of the diets, in the low-fructose diet group an increase inblood glucose was observed from 175.97 to 187.40 mg/dl,cholesterol from 34.05 to 36.89 mg/dl and HDL from 104.77to 115.47 mg/dl. However, no statistically significant differ-ences were found when comparing both groups. No statisti-cally significant differences were observed in lipid peroxida-tion parameters or oxidized carbonyls.Conclusion: The modifications in hepatic metabolismcould be related to the energy quantity and the source ofmacronutrients.(AU)


Assuntos
Humanos , Masculino , Feminino , Restrição Calórica , Frutose , Resistência à Insulina , Comportamento Alimentar , Ingestão de Alimentos , Obesidade , Ciências da Nutrição , Alimentos, Dieta e Nutrição
5.
Ann Intensive Care ; 14(1): 2, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38180573

RESUMO

Whereas aging is a whole-organism process, senescence is a cell mechanism that can be triggered by several stimuli. There is increasing evidence that critical conditions activate cell senescence programs irrespective of patient's age. In this review, we briefly describe the basic senescence pathways and the consequences of their activation in critically ill patients. The available evidence suggests a paradigm in which activation of senescence can be beneficial in the short term by rendering cells resistant to apoptosis, but also detrimental in a late phase by inducing a pro-inflammatory and pro-fibrotic state. Senescence can be a therapeutic target. The use of drugs that eliminate senescent cells (senolytics) or the senescence-associated phenotype (senomorphics) will require monitoring of these cell responses and identification of therapeutic windows to improve the outcome of critically ill patients.

6.
FASEB Bioadv ; 6(1): 12-25, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38223200

RESUMO

Variations in the Toll-interacting protein (TOLLIP) gene have been identified in genome-wide association studies to correlate with risk of disease, mortality, and response to N-acetylcysteine therapy in idiopathic pulmonary fibrosis. Although TOLLIP is known to modulate innate immune responses, its relevance in organ fibrogenesis remains unknown. Prior work in the literature suggests TOLLIP dampens transforming growth factor beta (TGFß) signaling in human cell lines. In this study, we examined the role of TOLLIP in mouse lung fibroblast (MLF) responses to TGFß and in the bleomycin model of experimental lung fibrosis using Tollip-/- mice. We hypothesize that if TOLLIP negatively regulates TGFß signaling, then Tollip-/- mouse lung fibroblasts (MLFs) would have enhanced response to TGFß treatment, and Tollip-/- mice would develop increased fibrosis following bleomycin challenge. Primary MLFs were stimulated with TGFß (1 ng/mL) for 24 h. RNA was obtained to assess global transcriptional responses by RNA-seq and markers of myofibroblast transition by qPCR. Functional assessment of TGFß-stimulated MLFs included cell migration by scratch assay, cell proliferation, and matrix invasion through Matrigel. In the in vivo model of lung fibrosis, Tollip-/- mice and wild-type (WT) littermates were administered bleomycin intratracheally and assessed for fibrosis. We further examined TGFß signaling in vivo after bleomycin injury by SMAD2, ERK1/2, and TGFßR1 Western blot. In response to TGFß treatment, both WT and Tollip-/- MLFs exhibited global transcriptional changes consistent with myofibroblast differentiation. However, Tollip-/- MLFs showed greater number of differentially expressed genes compared to WT MLFs and greater upregulation of Acta2 by qPCR. Functionally, Tollip-/- MLFs also exhibited increased migration and Matrigel invasiveness compared to WT. We found evidence of enhanced TGFß signaling in Tollip-/- through SMAD2 in vitro and in vivo. Tollip-/- mice experienced lower survival using a standard weight-adjusted dosing without evidence of differences in fibrosis at Day 21. With adjustment of dosing for sex, no differences were observed in fibrosis at Day 21. However, Tollip-/- mice had greater weight loss and increased bronchoalveolar lavage fluid total protein during early resolution at Day 14 compared to WT without evidence of differences in acute lung injury at Day 7, suggesting impaired resolution of lung injury.

7.
J Exp Bot ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066672

RESUMO

Sex determination process in cucurbits involves the control of stamen or carpel development during the specification of male or female flowers from a bisexual floral meristem, a function coordinated by ethylene. A gain-of-function mutation in the miR164-binding site of CpCUC2B, ortholog of the Arabidopsis transcription factor gene CUC2, not only produced ectopic floral meristems and organs, but also suppressed the development of carpels and promotes the development of stamens. The cuc2b mutation induced the transcription of CpCUC2B in the apical shoots of plants after female flowering but repressed other CUC genes regulated by miR164, suggesting a conserved functional redundancy of these genes in the development of squash flowers. The synergistic androecious phenotype of the double mutant between cuc2b and etr2b, an ethylene insensitive mutation that enhances the production of male flowers, demonstrated that CpCUC2B arrests the development of carpels independently of ethylene and CpWIP1B. The transcriptional regulation of CpCUC1, CpCUC2, and ethylene genes in cuc2b and ethylene mutants also confirms this conclusion. However, the epistasis of cuc2b over aco1a, a mutation that suppresses stamen arrest in female flowers, and the down-regulation of CpACS27A in cuc2b female apical shoots, indicated that CpCUC2B promotes stamen development by suppressing the late ethylene production.

8.
Toxicol Mech Methods ; : 1-10, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38083799

RESUMO

Liver diseases preceding the occurrence of hepatocellular carcinoma (HCC) play a crucial role in the progression and establishment of HCC, a malignancy ranked as the third deadliest cancer worldwide. Late diagnosis, alongside ineffective treatment, leads patients to a poor survival rate. This scenario argues for seeking novel alternatives for detecting liver alterations preceding the early occurrence of HCC. Experimental studies have reported that ABCC3 protein increases within HCC tumors but not in adjacent tissue. Therefore, we analyzed ABCC3 expression in public databases and investigated the presence of ABCC3 and its isoforms in plasma, urine and its release in extracellular vesicles (EVs) cargo from patients bearing cirrhosis and HCC. The UALCAN and GEPIA databases were used to analyze the expression of ABCC3 in HCC. The results were validated in a case-control study including 41 individuals bearing cirrhosis and HCC, and the levels of ABCC3 in plasma and urine samples, as well as EVs, were analyzed by ELISA and western blot. Our data showed that ABCC3 expression was higher in HCC tissues than in normal tissues and correlated with HCC grade and stage. ABCC3 protein levels were highly increased in both plasma and urine and correlated with liver disease progression and severity. The isoforms MRP3A and MRP3B of ABCC3 were significantly increased in both EVs and plasma/urine of patients bearing HCC. ABCC3 expression gradually increases in HCC tissues, and its protein levels are increased in both plasma and urine of patients with cirrhosis and HCC. MRP3A and MRP3B isoforms have the potential to be prognostic biomarkers of HCC.

9.
Nat Metab ; 5(12): 2111-2130, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38097808

RESUMO

Fibrogenesis is part of a normal protective response to tissue injury that can become irreversible and progressive, leading to fatal diseases. Senescent cells are a main driver of fibrotic diseases through their secretome, known as senescence-associated secretory phenotype (SASP). Here, we report that cellular senescence, and multiple types of fibrotic diseases in mice and humans are characterized by the accumulation of iron. We show that vascular and hemolytic injuries are efficient in triggering iron accumulation, which in turn can cause senescence and promote fibrosis. Notably, we find that senescent cells persistently accumulate iron, even when the surge of extracellular iron has subdued. Indeed, under normal conditions of extracellular iron, cells exposed to different types of senescence-inducing insults accumulate abundant ferritin-bound iron, mostly within lysosomes, and present high levels of labile iron, which fuels the generation of reactive oxygen species and the SASP. Finally, we demonstrate that detection of iron by magnetic resonance imaging might allow non-invasive assessment of fibrotic burden in the kidneys of mice and in patients with renal fibrosis. Our findings suggest that iron accumulation plays a central role in senescence and fibrosis, even when the initiating events may be independent of iron, and identify iron metabolism as a potential therapeutic target for senescence-associated diseases.


Assuntos
Senescência Celular , Fenótipo Secretor Associado à Senescência , Humanos , Ferro , Rim , Fibrose
10.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38139023

RESUMO

In the monoecious Cucurbita pepo, the transition to female flowering is the time at which the plant starts the production of female flowers after an initial male phase of development. Ethylene plays an essential role in this process since some ethylene deficient and ethylene-insensitive mutants are androecious and only produce male flowers. To gain insight into the molecular mechanisms regulating the specification and early development of female flowers, we have compared the transcriptomic changes occurring in the shoot apices of WT and androecious ethylene-insensitive etr1b mutant plants upon female flowering transition. There were 1160 female flowering-specific DEGs identified in WT plants upon female flowering, and 284 of them were found to be modulated by the ethylene-insensitive etr1b mutation. The function of these DEGs indicated that female flower specification depends on the adoption of a transcriptional program that includes previously identified sex-determining genes in the ethylene pathway, but also genes controlling the biosynthesis and signaling pathways of other phytohormones, and those encoding for many different transcription factors. The transcriptomic changes suggested that gibberellins play a negative role in female flowering, while ethylene, auxins, ABA and cytokinins are positive regulators. Transcription factors from 34 families, including NAC, ERF, bHLH, bZIP, MYB and C2H2/CH3, were found to be regulating female flowering in an ethylene-dependent or -independent manner. Our data open a new perspective of the molecular mechanisms that control the specification and development of female flowers in C. pepo.


Assuntos
Cucurbita , Humanos , Reguladores de Crescimento de Plantas/metabolismo , Etilenos/metabolismo , RNA-Seq , Flores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas
11.
Plant Sci ; 336: 111853, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37659732

RESUMO

The squash gain-of-function mutant etr2b disrupts the ethylene-binding domain of ethylene receptor CpETR2B, conferring partial ethylene insensitivity, changes in flower and fruit development, and enhanced salt tolerance. In this paper, we found that etr2b also confers a growth advantage as well as a physiological and metabolomic response that make the mutant better adapted to drought. Mutant plants had a higher root and leaf biomass than WT under both well-watered and drought conditions, but the reduction in growth parameters in response to drought was similar in WT and etr2b. Water deficit reduced all gas-exchange parameters in both WT and etr2b, but under moderate drought the mutant increased photosynthesis rate in comparison with control conditions, and showed a higher leaf CO2 concentration, transpiration rate, and stomata conductance than WT. The response of etr2b to drought indicates that ethylene is a negative regulator of plant growth under both control and drought. Since etr2b increased ABA content in well-watered plant, but prevented the induction of ABA production in response to drought, it is likely that the etr2b response under drought is not mediated by ABA. A 1H NMR metabolomic analysis revealed that etr2b enhances the accumulation of osmolytes (soluble sugars and trigonelline), unsaturated and polyunsaturated fatty acids, and phenolic compounds under drought, concomitantly with a reduction of malic- and fumaric-acid. The role of CpETR2B and ethylene in the regulation of these drought-protective metabolites is discussed.


Assuntos
Secas , Folhas de Planta , Folhas de Planta/metabolismo , Água/metabolismo , Etilenos/metabolismo , Estresse Fisiológico/fisiologia , Ácido Abscísico/metabolismo
12.
Mycopathologia ; 188(6): 919-928, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37314581

RESUMO

Systemic candidiasis are high mortality infections caused by yeasts of the genus Candida, affecting patients with numerous risk factors. Nowadays, candidemia produced by "non-albicans" species has increased considerably. Timely diagnosis and subsequent treatment substantially improve patients' survival. Our objectives are to study the frequency, distribution, and antifungal susceptibility profiles of candidemia isolates in our hospital. We conducted a descriptive, cross-sectional study. Positive blood cultures were recorded from January 2018 to December 2021. Positive Candida genus blood cultures were selected, classified, and analyzed on their susceptibility profile for amphotericin B, fluconazole and caspofungin using AST-YS08® card for VITEK 2 Compact® to determine minimum inhibitory concentration (MIC) and CLSI M60 2020 2nd Edition to determine breakpoints. 3862 positive blood cultures were obtained, 113 (2.93%) presented growth of Candida spp., corresponding to 58 patients. 55.2% came from the Hospitalization Ward and Emergency Services and 44.8% from the Intensive Care Unit. The species were distributed as follows: Nakaseomyces glabratus (Candida glabrata) (32.74%), Candida albicans (27.43%), Candida parapsilosis (23.01%), Candida tropicalis (7.08%) and others (9.73%). Most species were found to be susceptible to most antifungals, except for C. parapsilosis, presenting 4 isolates with resistance to fluconazole and N. glabratus (C. glabrata), whose clinical susceptibility data remains insufficient to provide accurate breakpoints. The percentage of recorded positive blood cultures of Candida spp. was 2.93%, these results were consistent with those reported at a regional level. A predominance of "non-albicans" species was observed. It is essential to know the prevalence, epidemiology, and susceptibility profiles of candidemia in our country, as well as being updated on its subsequent changes, maintaining epidemiological surveillance. This allows professionals to map out early and effective therapeutic strategies, staying alert of possible multi-resistant strains.


Assuntos
Antifúngicos , Candidemia , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candidemia/tratamento farmacológico , Candidemia/epidemiologia , Candidemia/microbiologia , Fluconazol/farmacologia , Uruguai/epidemiologia , Estudos Transversais , Candida , Candida glabrata , Hospitais Universitários , Candida parapsilosis , Testes de Sensibilidade Microbiana , Farmacorresistência Fúngica
13.
Pediatr Nephrol ; 38(12): 4203-4207, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37130974

RESUMO

BACKGROUND: Despite recent well-established kidney tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), usually presenting as acute kidney injury (AKI), there are few published cases with SARS-CoV-2-related tubulointerstitial nephritis (TIN). We report an adolescent with TIN and delayed association with uveitis (TINU syndrome), where SARS-CoV-2 spike protein was identified in kidney biopsy. CASE-DIAGNOSIS/TREATMENT: A 12-year-old girl was assessed for a mild elevation of serum creatinine detected during the evaluation of systemic manifestations including asthenia, anorexia, abdominal pain, vomiting, and weight loss. Data of incomplete proximal tubular dysfunction (hypophosphatemia and hypouricemia with inappropriate urinary losses, low molecular weight proteinuria, and glucosuria) were also associated. Symptoms had initiated after a febrile respiratory infection with no known infectious cause. After 8 weeks, the patient tested positive in PCR for SARS-CoV-2 (Omicron variant). A subsequent percutaneous kidney biopsy revealed TIN and immunofluorescence staining with confocal microscopy detected the presence of SARS-CoV-2 protein S within the kidney interstitium. Steroid therapy was started with gradual tapering. Ten months after onset of clinical manifestations, as serum creatinine remained slightly elevated and kidney ultrasound showed mild bilateral parenchymal cortical thinning, a second percutaneous kidney biopsy was performed, without demonstrating acute inflammation or chronic changes, but SARS-CoV-2 protein S within the kidney tissue was again detected. At that moment, simultaneous routine ophthalmological examination revealed an asymptomatic bilateral anterior uveitis. CONCLUSIONS: We present a patient who was found to have SARS-CoV-2 in kidney tissue several weeks following onset of TINU syndrome. Although simultaneous infection by SARS-CoV-2 could not be demonstrated at onset of symptoms, since no other etiological cause was identified, we hypothesize that SARS-CoV-2 might have been involved in triggering the patient's illness.


Assuntos
COVID-19 , Nefrite Intersticial , Uveíte , Criança , Feminino , Humanos , COVID-19/complicações , COVID-19/diagnóstico , Creatinina , Nefrite Intersticial/diagnóstico , Nefrite Intersticial/tratamento farmacológico , Nefrite Intersticial/etiologia , SARS-CoV-2 , Uveíte/diagnóstico , Uveíte/tratamento farmacológico , Uveíte/etiologia
14.
Physiol Plant ; 175(1): e13864, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36718078

RESUMO

The enhanced salt tolerance of squash ethylene-insensitive mutants during germination and early stages of seedling development suggested that abscisic acid (ABA) could mediate this tolerance. To gain insight into the crosstalk between ethylene and ABA in seed germination, the germination rate and early seedling growth of wild type (WT) and ethylene-insensitive etr2b mutant were compared in seeds germinated under water and exogenous ABA treatment. The etr2b seeds germinated earlier than WT under both water and ABA, and the effect of ABA on radicle length and seedling growth of etr2b was lower than in WT, indicating that etr2b is also insensitive to ABA. The comparison of ABA and ethylene contents and ABA and ethylene gene expression profiles in WT and etr2b dry and imbibed seeds in either water, NaCl or ABA demonstrated a clear crosstalk between ethylene and ABA in germination. The expression profiles of ethylene genes in WT and etr2b indicated that the role of ethylene in seed germination does not appear to follow the canonical ethylene signaling pathway. Instead, etr2b reduces ABA content during formation of the seeds (dry seeds) and in response to seed imbibition and germination, which means diminished dormancy in the ethylene mutant. The etr2b mutation downregulated the expression of ABA biosynthesis and signaling genes during germination, demonstrating the positive role of ethylene receptor gene CpETR2B on seed germination and early seedling growth in squash is mediated by ABA. The reduced effect of exogenous ABA on ethylene production and ethylene gene expression in etr2b seeds suggests that this regulation is also dependent on ethylene.


Assuntos
Ácido Abscísico , Cucurbita , Ácido Abscísico/metabolismo , Germinação , Reguladores de Crescimento de Plantas/metabolismo , Etilenos/metabolismo , Plântula/metabolismo , Mutação , Sementes , Água/metabolismo , Regulação da Expressão Gênica de Plantas
15.
Eur Respir J ; 61(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36104291

RESUMO

BACKGROUND: Infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may cause a severe disease, termed coronavirus disease 2019 (COVID-19), with significant mortality. Host responses to this infection, mainly in terms of systemic inflammation, have emerged as key pathogenetic mechanisms and their modulation has shown a mortality benefit. METHODS: In a cohort of 56 critically ill COVID-19 patients, peripheral blood transcriptomes were obtained at admission to an intensive care unit (ICU) and clustered using an unsupervised algorithm. Differences in gene expression, circulating microRNAs (c-miRNAs) and clinical data between clusters were assessed, and circulating cell populations estimated from sequencing data. A transcriptomic signature was defined and applied to an external cohort to validate the findings. RESULTS: We identified two transcriptomic clusters characterised by expression of either interferon-related or immune checkpoint genes, respectively. Steroids have cluster-specific effects, decreasing lymphocyte activation in the former but promoting B-cell activation in the latter. These profiles have different ICU outcomes, despite no major clinical differences at ICU admission. A transcriptomic signature was used to identify these clusters in two external validation cohorts (with 50 and 60 patients), yielding similar results. CONCLUSIONS: These results reveal different underlying pathogenetic mechanisms and illustrate the potential of transcriptomics to identify patient endotypes in severe COVID-19 with the aim to ultimately personalise their therapies.


Assuntos
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2 , Transcriptoma , Estado Terminal , Unidades de Terapia Intensiva
16.
J Hepatobiliary Pancreat Sci ; 30(3): 374-382, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35947065

RESUMO

BACKGROUND: Recent trials and metanalysis have demonstrated the favorable results of laparoscopic cholecystectomy (LC) and laparoscopic common bile duct exploration (LCBDE) for the treatment of cholecysto-choledocholithiasis. The aim of this study was to evaluate the LC + LCBDE learning curve including transcystic and transductal approaches and its effect on the outcomes. METHODS: We identified all unselected patients who underwent LC + LCBDE by a single surgeon between May 2017 and July 2021. Pre-, intra-, and postoperative data were analyzed using the cumulative sum (CUSUM) analysis to evaluate the learning curve. RESULTS: A total of 110 patients were included. Total postoperative complications rate was 12.7%, including bile leakage in six (5.5%) patients. Mean length of hospital stay was 2.7 (1-14) days. No patient had conversion to open surgery. The CUSUM graph divided the learning curve into three distinct phases: (1) Learning (1-38), (2) Competence (39-61) and (3) Proficiency (62-110). There was a significant increase in the transcystic approach rate with each phase (44.7% vs 73.9% vs 98%; P < .001). A significant decrease in the operative time (150.9 vs 117.6 vs 99.9 min; P < .001) and complication rate (21.1% vs 21.7% vs 2%; P = .01) were observed across the three phases. CONCLUSION: Our data suggest that the learning curve for complete competence in LC + LCBDE is approximately 60 cases, provided that proper training is available. The initial learning phase can be carried out safely and efficiently with acceptable results.


Assuntos
Colecistectomia Laparoscópica , Coledocolitíase , Laparoscopia , Humanos , Curva de Aprendizado , Coledocolitíase/etiologia , Colecistectomia Laparoscópica/efeitos adversos , Colecistectomia Laparoscópica/métodos , Complicações Pós-Operatórias/cirurgia , Ducto Colédoco/cirurgia , Estudos Retrospectivos , Tempo de Internação
17.
J Exp Bot ; 74(4): 1258-1274, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36453889

RESUMO

Jasmonate (JA) has been found to be a relevant hormone in floral development in numerous species, but its function in cucurbit floral development and sex determination is unknown. Crosstalk between JA and ethylene (ET) in the differential regulation of male and female floral development was investigated by using the novel JA-deficient mutant lox3a, and the ET-deficient and -insensitive mutants, aco1a and etr2b, respectively, of Cucurbita pepo. The lox3a mutation suppresses male and female flower opening and induces the development of parthenocarpic fruit. A bulked-segregant analysis coupled with whole genome sequencing and fine mapping approach allowed the identification of lox3a mutation in CpLOX3A, a LIPOXYGENASE gene involved in JA biosynthesis. The reduced JA content and expression of JA-signalling genes in male and female flowers of lox3a, and the rescue of lox3a phenotype by external application of methyl jasmonate (MeJA), demonstrated that JA controls petal elongation and flower opening, as well as fruit abortion in the absence of fertilization. JA also rescued the phenotype of ET mutants aco1a and etr2b, which are both specifically defective in female flower opening and fruit abortion. ET, the sex determining hormone of cucurbits, is induced in female flowers towards anthesis, activating JA production and promoting the aperture of the female flower, and the abortion of the unfertilized ovary. Given the close association between flower closure and parthenocarpic fruit development, we propose that flower opening can act as a switch that triggers fruit set and development in fertilized ovaries, but may alternatively induce the abortion of the unfertilized ovary. Both ET and JA from mature and senescent petals can serve as remote signals that determine the alternative development of the ovary and fruit.


Assuntos
Cucurbita , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Etilenos/metabolismo , Flores , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Hormônios/metabolismo , Regulação da Expressão Gênica de Plantas
18.
Immunogenetics ; 75(2): 91-98, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36434151

RESUMO

MDA5, encoded by the IFIH1gene, is a cytoplasmic sensor of viral RNAs that triggers interferon (IFN) antiviral responses. Common and rare IFIH1 variants have been associated with the risk of type 1 diabetes and other immune-mediated disorders, and with the outcome of viral diseases. Variants associated with reduced IFN expression would increase the risk for severe viral disease. The MDA5/IFN pathway would play a critical role in the response to SARS-CoV-2 infection mediating the extent and severity of COVID-19. Here, we genotyped a cohort of 477 patients with critical ICU COVID-19 (109 death) for three IFIH1 functional variants: rs1990760 (p.Ala946Thr), rs35337543 (splicing variant, intron 8 + 1G > C), and rs35744605 (p.Glu627Stop). The main finding of our study was a significant increased frequency of rs1990760 C-carriers in early-onset patients (< 65 years) (p = 0.01; OR = 1.64, 95%CI = 1.18-2.43). This variant was also increased in critical vs. no-ICU patients and in critical vs. asymptomatic controls. The rs35744605 C variant was associated with increased blood IL6 levels at ICU admission. The rare rs35337543 splicing variant showed a trend toward protection from early-onset critical COVID-19. In conclusion, IFIH1 variants associated with reduced gene expression and lower IFN response might contribute to develop critical COVID-19 with an age-dependent effect.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 1 , Humanos , Helicase IFIH1 Induzida por Interferon/genética , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , COVID-19/genética , SARS-CoV-2 , Diabetes Mellitus Tipo 1/genética
20.
Int J Mol Sci ; 23(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35887292

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by parenchymal scarring, leading progressively to alveolar architecture distortion, respiratory failure, and eventually death. Currently, there is no effective treatment for IPF. Previously, 3'5-dimaleamylbenzoic acid (3'5-DMBA), a maleimide, demonstrated pro-apoptotic, anti-inflammatory, and anti-cancer properties; however, its potential therapeutic effects on IPF have not been addressed. Bleomycin (BLM) 100 U/kg was administered to CD1 mice through an osmotic minipump. After fourteen days of BLM administration, 3'5-DMBA (6 mg/kg or 10 mg/kg) and its vehicle carboxymethylcellulose (CMC) were administered intragastrically every two days until day 26. On day 28, all mice were euthanized. The 3'5-DMBA effect was assessed by histological and immunohistochemical staining, as well as by RT-qPCR. The redox status on lung tissue was evaluated by determining the glutathione content and the GSH/GSSG ratio. 3'5-DMBA treatment re-established typical lung histological features and decreased the expression of BLM-induced fibrotic markers: collagen, α-SMA, and TGF-ß1. Furthermore, 3'5-DMBA significantly reduced the expression of genes involved in fibrogenesis. In addition, it decreased reduced glutathione and increased oxidized glutathione content without promoting oxidative damage to lipids, as evidenced by the decrease in the lipid peroxidation marker 4-HNE. Therefore, 3'5-DMBA may be a promising candidate for IPF treatment.


Assuntos
Bleomicina , Fibrose Pulmonar Idiopática , Animais , Anti-Inflamatórios/farmacologia , Bleomicina/efeitos adversos , Colágeno/metabolismo , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...